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Abstract

Understanding of the fundamental mechanism of boiling from enhanced structures is currently incomplete. The

main focus of the present study was to develop a semi-analytical model to predict the bubble departure diameter,

frequency, and nucleation site density for a boiling enhancement structure. Existing models in literature were used as

a framework to develop this. Salient feature of the model is the improvements on sub-models for bubble departure

diameter, evaporation within the channels and convective heat transfer from the external surfaces of the enhanced

structure. The model was used to calculate the total heat dissipated from the structures. Comparisons to experiments

revealed that the bubble departure is predicted within �10%, frequency within �30% for all data points except a couple,

nucleation site density within �40% and the heat flux within �50%. Sample calculations have been included to show its

use in optimizing the geometrical parameters for maximizing heat transfer.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The enhancement in heat transfer using structured

surfaces has been demonstrated sufficiently in literature

[1,2]. However, there are only few studies on modeling

boiling from such structures. Nakayama et al. [3] were

the first to develop a semi-empirical model. They carried

out visualization studies on a structure that had rect-

angular channels (0.15–0.25 mm) covered with a thin

plate (�100 lm) with pores (0.03–0.2 mm diameter) at a

constant pitch (0.6–0.72 mm). They hypothesized that

the main mechanism of boiling inside the channels was

�suction–evaporation�, wherein a thin meniscus of liquid

evaporated at the sharp corners and generated the

bubbles at the pores. Using the experimental data, a

semi-empirical model was developed, which included

equations for the bubble departure diameter, frequency,

and total heat flux from the structure. The semi-ana-

lytical model of Nakayama et al. [3] had six empirical
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constants. Chien and Webb [4] used a similar framework

and modified several features of the existing model to

reduce the empirical constants. Salient improvements in

the model included tracking the liquid menisci radius

inside the channels as a function of time, calculating the

bubble departure diameter based on a force balance and

calculating the heat flux from the external surfaces using

an improved model developed by Haider and Webb [5].

Both of these studies [3,4] validated the models for a

narrow range of wall superheats (0–4 �C). The current

study builds on the previous models to predict the

bubble dynamics from a single layered enhanced struc-

ture for a wider range of wall superheats. The enhanced

structure consists of an array of rectangular channels on

opposite sides of a silicon substrate. The channel depth

is more than half the substrate thickness and by aligning

the channels on either side orthogonal to each other,

pores are created at the intersection points (Fig. 1).

In the studies by Nakayama et al. [3] and Chien and

Webb [4], the bubbles emerge from the pores in an

unbounded liquid. In the current study, the channel

walls bound a growing bubble on two sides initially.

However, high-speed visualization showed that the

bubbles eventually emerge on the external surface and
ed.

mail to: yogendra.joshi@me.gatech.edu


Nomenclature

A area (m2)

Acyc volume of liquid evaporated/length for one

bubble cycle (m2)

Am meniscus area (m2)

A0 proportionality constant for inertia driven

bubble growth (Eq. (2))

c empirical constant for modeling external

convection (Eq. (41))

cp specific heat of liquid (J/kgK)

CH Hamaker constant, Eq. (14)––(J)

CL empirical constant for the lift force (Eq. (8))

Cs empirical constant for unsteady growth

force (Eq. (1))

Ctl empirical constant for the rate of evapora-

tion inside tunnels (Eq. (29))

Ctg empirical constant for the growth rate (Eq.

(35))

D instantaneous diameter (mm)

f frequency (Hz)

F force (N)

g acceleration due to gravity (9.81 m/s2)

hfg latent heat of vaporization (J/kg)

H height (mm)

k thermal conductivity (W/mK)

L length of the tunnel (mm)

m mass (kg)

ns nucleation site density (m�2)

Nb number of bubbles generated

Nm number of menisci

Np number of pores/channel

P pressure (Pa)

Pp pore pitch (mm)

Pr Prandtl number

q00 heat flux (W/cm2)

Q heat dissipation (W)

rm instantaneous meniscus radius (lm)

rm;i initial meniscus radius (lm)

rm;e final meniscus radius (lm)

rne non-evaporating meniscus radius (lm)

R instantaneous bubble radius (mm)

R particular gas constant (J/kgK)
_RR, vg velocity at center of bubble––dR=dt (m/s)
€RR acceleration at center of bubble––d2R=dt2

(m/s2)

s average separation distance between bubbles

(mm)

t time (s)

tc thickness of cover plate (mm)

T temperature (�C)
Tw local wall temperature (�C)
Ts local saturation temperature (�C)
vd bubble rise velocity (m/s)

vn velocity of bubble front (m/s)

vt terminal velocity of bubble in a liquid pool

(m/s)

V volume (m3)

Wt channel width (mm)

Greek symbols

d meniscus thickness (lm)

D difference in two quantities

/ angle from the vertical axis for meniscus

thickness evaluation (degrees)

q density (kg/m3)

r surface tension (m/s)

h contact angle (deg)

Subscripts

b bubble

bi bubble inertia

B buoyancy

d departure

duy unsteady growth

e intake

ex external surface

exp experimental

g growth

l liquid

li liquid inertia

L lift

m meniscus

ne non-evaporating

p pore

pred predicted

sat saturation

st surface tension

sup superheat

t channel (or tunnel)

v vapor

vm mean vapor

w waiting

wall at the bottom of the enhanced structure
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are spherical in shape. The visualization studies showed

that the diameter of the bubble (where it attaches to

the top surface of the structure) was approximately

equal to the pore diameter. Hence, it is hypothesized in
this study that the bubble growing on the external

surface is attached to the pore by a cylindrical stem

whose diameter is same as that of the pore and height

equal to the channel depth.
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Fig. 1. Enhanced structures employed in this study.

Fig. 2. Phases in a bubble growth and departure cycle.
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The four essential parameters to quantify the boiling

process are bubble departure diameter (Dd), frequency

(f ), nucleation site density (ns) and the dissipated heat

flux (q00). The frequency is defined as the inverse of the

total time for one bubble cycle. Each bubble cycle con-

sists of a waiting period (Dtw), a growth period (Dtg) and
a liquid intake period (Dte) (see Fig. 2). There is some

overlap between the growth period and the liquid intake

period. Both Nakayama et al. [3] and Chien andWebb [4]

found that the liquid intake period is very short com-

pared to the other two and neglected it in their analytical

models. The authors� visualization studies confirm this

and hence the current model does not include the liquid

intake period. The total heat flux is made up of two parts,

evaporation inside the tunnels (q00t ) and enhanced con-

vection on the external surfaces (q00ex). Modeling of all

these parameters is outlined in the following sections.
2. Semi-analytical model

2.1. Modeling bubble departure diameter

Most models for bubble departure from plain sur-

faces consider only the static forces during bubble
growth. Klausner et al. [6] developed a comprehensive

model for predicting the bubble departure diameters in

flow boiling from plain surfaces. Zeng et al. [7] used

these expressions to predict bubble departure diameters

in pool boiling. Based on the magnitude of the various

forces they concluded that for pool boiling, only the

buoyancy and drag due to unsteady growth are impor-

tant. One of their assumptions was that at departure the

contact diameter approaches near zero due to necking at

the cavity mouth. Based on this assumption they ne-

glected the surface tension force. In a recent study,

Sharma [8] pointed out that the liquid inertia force and

the bubble inertia force are also important in addition to

the forces mentioned above. All the above mentioned

studies assume the growth rate to be heat transfer con-

trolled and the instantaneous diameter was assumed to

be proportional to the square root of time.

In enhanced structures, the bubbles are generated

primarily because of evaporation of liquid menisci inside

the tunnels and hence the process is inertia driven [9].

Based on the observations of Chien and Webb [9] and

the present authors, the departing bubbles were found to

be spherical in shape and attaching to the surface pore

with a finite contact angle, unlike a flattened out bubble

with a low contact angle for plain surfaces. Hence the

necking phenomenon is not valid for the enhanced

structures and the surface tension force cannot be ne-

glected. The flow visualization studies also show that the

departing bubble has a tendency to drag the next bubble

growing at the same pore and hence the lift force due to

wake of the departing bubble is also important. The

expressions for the different forces (unsteady growth,

buoyancy, surface tension, lift force, bubble inertia and

liquid inertia) are given below.

(a) Unsteady growth force (Fduy): The expression for the

growth force was developed by Zeng et al. [7] as

Fduy ¼ qlpR
2 3

2
Cs

_RR2
�

þ R€RR
�

ð1Þ

where the constant Cs was found to be equal to 20/3.

For an inertia driven growth
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R ¼ A0t ð2Þ

where A0 is a function of the wall superheat, geo-

metry and properties of the fluid.

Combining Eqs. (1) and (2), the expression for

growth force can be written as

Fduy ¼ 3
2
qlpA

02CsR2 ð3Þ

(b) Buoyancy force (FB): The buoyancy force on a bub-

ble is given as

FB ¼ ðql � qvÞgVb ð4Þ

where Vb is the truncated bubble volume at depar-

ture (Fig. 3) and is given as

Vb ¼
p
3

D3

4

 
þ D2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � D2

p

q
þ
D2

p

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � D2

p

q !
ð5Þ

(c) Surface tension force (Fst): The surface tension force

is formulated similar to Chien and Webb [4]. Based

on a simple geometrical analysis from Fig. 3, the

contact angle h is evaluated as

h ¼ sin�1 Dp

D

� �
ð6Þ

The surface tension force is then given as

Fst ¼ rpDp sinðhÞ ð7Þ

(d) Lift force (FL): The lift force on a bubble is modeled

similar to Kolev [10]. The expression for this force

can be written as

FL ¼ p
2
qlðDvdÞ

2CL ð8Þ

The rising bubbles induce a flow which has a rise

velocity of vd. The velocity was assumed to be ap-

proximately equal to 2dR=dt [7]. Hence the lift force

can be rewritten as

FL ¼ 2pqlðDA0Þ2CL ð9Þ

The coefficient CL was found by fitting the bubble

departure diameters obtained from one set of visu-

alization experiments [11] to the predictions based
Fig. 3. Growing bubble on a surface pore [4].
on the above forces. A value of 1.2 was found to

predict the bubble departure diameters within 5% for

that set of data. The predictions for other structures

are presented in a later section in this paper.

(e) Bubble inertia force (Fbi): Sharma [8] used the fol-

lowing expression for the bubble inertia force:

Fbi ¼ mv

dvg
dt

þ vg
dm
dR

dR
dt

ð10Þ

For a linear bubble growth rate, the acceleration

term dvg=dt ¼ 0. The velocity at the bubble center,

vg ¼ dR=dt [12]. The term dR=dt can be obtained by

differentiating Eq. (5) and multipying the resulting

expression with the vapor density (qv). Combining

Eqs. (2), (5) and (10) gives

Fbi ¼ A02q
v

p
3

3D2

4

(
þ 1

4

D3 � 2DD2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � D2

p

p
 !

�
D2

p
D

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

d
� D2

p

p
)

ð11Þ

(f) Liquid inertia force (Fli): As the bubble grows, the

surrounding liquid resists movement. Hence, a force

is imparted on the bubble resisting its growth. The

liquid inertia can be expressed as

Fli ¼ Vbql

dvn
dt

ð12Þ

For inertia driven growth, the velocity of the bubble

front is constant (zero acceleration). Hence there is

no inertia force.

At departure, the instantaneous diameter of the

bubble D ¼ Dd and hence solving a force balance

equation will give the bubble departure diameter. The

buoyancy force and the lift force tend to pull the bubble

off the pore, where as the other three forces (growth,

surface tension and bubble inertia) keep it attached.

Hence the bubble departs when

Fduy þ Fst þ Fbi ¼ FB þ FL:
2.2. Modeling tunnel heat transfer

The tunnel heat transfer is modeled similar to Chien

and Webb [4] with few modifications. The meniscus

along one corner is shown in Fig. 4a and the local

thickness is calculated perpendicular to the liquid–vapor

interface. A one-dimensional heat conduction analysis

gives

q00t ¼
kl

dð/Þ ðTw � TsÞ ð13Þ

where Ts is the local saturation temperature of the liquid

and may not be same as the bulk saturation tempera-

ture. When the liquid film becomes very thin, the satu-



Fig. 4. Liquid meniscus along the corners of the tunnel (a) sharp corners (Nm ¼ 4), (b) rounded corners (Nm ¼ 2).
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ration temperature elevates due to capillary pressure and

disjoining pressure [13]. Based on this assumption, the

local saturation temperature can be expressed as [4]

Ts ¼ Tsat 1

�
þ r=rm þ CH=d

3

hfgql

�
ð14Þ

where CH is the Hamaker constant. Dasgupta et al. [13]

carried out experiments to determine the equilibrium

disjoining pressure from thin evaporating menisci and

found that the Hamaker constant is a function of the

liquid surface combination and the wall superheat value.

For an octane/silicon system they found the Hamaker

constant to be in the range 3.0) 0.69� 10�21 J, for wall

superheats in the range 0.000045–0.002 �C. Since no

information was avilable in literature for FC-72 and

similar low surface tension fluids, a constant of 1� 10�13

was used in the current model. The predictions for fre-

quency and nucleation site density were found to be

fairly sensitive to the value of Hamaker constant. A

value of 1� 10�13 resulted in the best predictions for

heat flux, nucleation site density and frequency. Chien

and Webb [4] used a value of 2� 10�12 for their model

and the reasoning seems to be similar to that presented

above, although not explicitly stated. More fundamental

studies are required to accurately evaluate this constant

for low surface tension fluids.

The tunnel heat transfer rate can be evaluated as

dQt

dt
¼
Z Am

0

klðTw � TsÞ
dðt;/Þ dA ð15Þ

where Am is the meniscus area per unit length. Chien

and Webb [4] did not include the local wall superheat

term inside the integral. For fairly low wall superheat

values, the variation in the local saturation temperature

was found to have minimal effect on the heat transfer

predictions. This justifies their assumption of a uniform

local wall superheat equivalent to the bulk wall su-
perheat. However, in the current study, the wall su-

perheat values are as high as 12 �C and hence this term

was evaluated as a function of the local meniscus

thickness.

From Fig. 4a, for a small time step Dt, if the radius of
the meniscus is assumed to be constant, the local me-

niscus thickness can be calculated using the following

expression:

dðt;/Þ ¼ ½rmðtÞ þ dne� secð/Þ � rmðtÞ ð16Þ

where dne is the film thickness at which no more evap-

oration takes place. The non-evaporation thickness is

expressed as

dne ¼
CHTsat

qlhfgDTsup

� �1=3

ð17Þ

For a small increment in the angle (d/), the area dA can

be expressed as

dA ¼ LNmrmd/ ð18Þ

The latent heat transfer in the tunnel is given as

Qt ¼ 2LNm

Z 1=f

0

Z p=4

0

klðTw � TsÞ
½rmðtÞ þ dne� secð/Þ � rmðtÞ

� rmðtÞd/dt ð19Þ

The above equation requires the initial meniscus radius

(rm;i) to begin the calculation. The procedure for calcu-

lating the initial meniscus radius is similar to one de-

veloped by Chien and Webb [4] and is presented in a

later section. Once the initial meniscus radius is evalu-

ated, using small increments in time and angle (d/), Eq.
(19) is evaluated by numerical integration. The meniscus

radius is updated at every time step by a new value

calculated using the following equation:

rm;new ¼ r2m;old

�
� DVl
LNmð1� p=4Þ

�1=2
ð20Þ
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where DVl is the volume of liquid evaporated in the small

time increment. Using Eqs. (15)–(19), this can be ex-

pressed as

DVl ¼ Dt
2LNm

hfgql

�
Z p=4

0

klðTw � TsÞ
½rmðtÞ þ dne� secð/Þ � rmðtÞ

rmðtÞd/ ð21Þ
2.3. Modeling the waiting period

The following assumptions are made for modeling

the waiting period:

(a) At the initiation of the waiting period, the vapor in

the tunnel is in saturated state corresponding to the

system pressure.

(b) The vapor behaves as an ideal gas.

(c) The density and volume of vapor inside the tunnel

vary linearly with time.

Based on the first assumption, the initial conditions

are Pv0 ¼ Psat, Tv0 ¼ Tsat, and qv0 ¼ qv. At the end of

waiting period, the pressure inside the tunnels is equal to

the breakthrough pressure at the pore and is given by

Pv1 ¼ Pv0 þ
4r
Dp

ð22Þ

The Clausius–Clayperon equation is expressed as

dTv
dPv

¼ Tv0
qv0hfg

ð23Þ

and the equation of state for an ideal gas is

Pv ¼ qvRTv ð24Þ

Combining Eqs. (22)–(24), the temperature and density

at the end of waiting period can be evaluated as

Tv1 ¼ Tv0 þ
4r
Dp

� �
Tv0

qv0hfg
ð25Þ

qv1 ¼
qv0RTv0 þ 4r=Dp

R Tv0 þ 4r
Dp

Tv0
qv0hfg

� � ð26Þ

A heat balance equation can be written for heat transfer

in the tunnel as

dQt

dt
¼ hfg

dmv

dt
ð27Þ

where dmv=dt is the rate of vapor mass added in the

tunnel. This can be expressed as

dmv

dt
¼ Vvm

dqv

dt
þ qvm

dVv
dt

ð28Þ
Nakayama et al. [3] introduced an empirical constant to

account for the change in meniscus radius and modeled

the left-hand side of Eq. (27) as

dQt

dt
¼ klCtlðTwall � TvÞ ð29Þ

Chien and Webb [4] modified this by using Eq. (15) and

hence the empirical constant Ctl was eliminated. How-

ever, both the authors modeled the change in vapor

mass similarly and Eq. (27) was expressed asZ Dtw

0

dQt

dt
dt ¼ DTsupVvmhfg

qvmðhfg � RTv0Þ
RT 2

v0

�

� ln
Tv � Tv0
Twall � Tv1

� �
þ qvm

DTt1
ln

Vv1
Vt

� �	
ð30Þ

The current study follows a simpler approach by as-

suming that the density and volume vary linearly with

time. Hence for the waiting period (Dtw), the following

expressions hold:

dqv

dt
¼ ðqv1 � qv0Þ

Dtw
ð31Þ

dVv
dt

¼ ðVv1 � Vv0Þ
Dtw

ð32Þ

Combining Eqs. (27), (28), (31) and (32), the final ex-

pression for latent heat transfer rate inside the tunnels is

dQt

dt
¼ hfg Vvm

ðqv1 � qv0Þ
Dtw

�
þ qvm

ðVv1 � Vv0Þ
Dtw

	
ð33Þ

The difference in the right-hand side terms in Eqs. (30)

and (33) was less than 1% for all the structures used in

this study. Integrating Eq. (33) from t ¼ 0 to Dtw, one
obtainsZ Dtw

0

dQt

dt
dt ¼ hfgfVvmðqv1 � qv0Þ þ qvmðVv1 � Vv0Þg

ð34Þ

The right-hand side of Eq. (34) depends only on the

geometry of the structure. The left-hand side of Eq. (34)

is evaluated similar to Eq. (19) and solving the equation

provides the waiting period. The variables on the right-

hand side of Eq. (34) are expressed as Vv0 ¼ Vt and

Vv1 ¼ Vv0 þ NpðD2
ptc=4þ D3

p=12Þ, where Vt is the tunnel

volume, and tc is the thickness of the cover plate. For the
structures used by Nakayama et al. [3] and Chien and

Webb [4], the thickness of the cover plate was much

lesser than the pore size and hence this term was ne-

glected. In the current structures, the distance between

the pore and the top surface is approximately equal

to the height of the channels (see Fig. 5) and hence

this term has to be included (tc ¼ Ht). The terms Vvm and

qvm can be expressed as Vvm ¼ ðVv0 þ Vv1Þ=2 and qvm ¼
ðqv1þ qv0Þ=2.



Fig. 5. Bubbles growing on the enhanced structures used in the

current study (s¼ average separation distance).
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2.4. Modeling the growth period

As mentioned earlier, the boiling from plain surfaces

is typically modeled as heat transfer controlled and the

instantaneous bubble radius R � t1=2. As discussed by

Chien and Webb [9], the growth of bubble from struc-

tured surfaces is very different from boiling on plain

surfaces and is typically inertia controlled. They modi-

fied the growth equation of Mikic et al. [14] to evaluate

the growth rate as

dR
dt

¼ Ctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
7

hfgqvDTsup
qlTsat

� �
Dd � Dp

Dd þ Dp

� �s
ð35Þ

The constant Ctg was evaluated as 0.0296 based on a

curve fit of the bubble growth data. Visualization results

for the current structure [11] also show that the instan-

taneous bubble diameter varied linearly with time. The

above correlation was used for the current model and

good agreement with the experimental data was

achieved (for details see [15]). The bubble diameter at

the beginning of the growth period is equal to the pore

diameter and at time t ¼ Dtg, it is equal to Dd. Inte-

grating Eq. (35) within these limits gives

Dtg ¼
1

Ctg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7

p
qlTsat

hfgqvDTsup

� �
Dd þ Dp

Dd � Dp

� �s
Dd � Dp

2

� �

ð36Þ

Differentiating Eq. (2) with respect to �t� and com-

paring with Eq. (35) gives the expression for the con-

stant A0. As the bubble departure diameter is not known

a priori, the process becomes iterative.
2.5. Modeling nucleation site density

The vapor generated as a result of evaporation in the

tunnels is ejected out in the form of bubbles from the

pores. From a mass balance the number of bubbles

formed on the surface can be expressed as

Nb ¼
Qt

qvhfgf ðpD3
d=6Þ

ð37Þ

Dividing by the external area will give the nucleation

site density

ns ¼
Qt

qvhfgf ðpD3
d=6ÞAex

ð38Þ
2.6. Modeling external heat transfer

Several authors have investigated the enhanced con-

vection effect as a result of the intermittent bubble for-

mation on plain surfaces. Mikic and Rohsenow [16]

developed a model based on the intermittent nature of

the boiling process. According to the model, a bubble

departing from the heated surface removes a part of the

superheated layer within an area of influence equal to

twice the bubble departure diameter. Quenching of the

exposed area with fluid at the bulk temperature imme-

diately follows this. Hence, the problem was assumed

to be similar to one-dimensional transient conduction

through a semi-infinite solid. The time averaged heat

flux was evaluated as

q00ex ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pklqlcpf

p
D2

dnsDTsup ð39Þ

Tien [17] modeled the external convection based on a

hydrodynamic similarity between the flowfield associated

with a rising bubble column and an inverted stagnation

flow. Based on experimental data from other authors, the

external convective heat flux was expressed as

q00ex ¼ 61:3kln1=2s Pr1=3DTsup ð40Þ

Haider and Webb [5] evaluated the above two models

with visualization data of Chien and Webb [9] and found

that both models under predict the data by as much as

70%. Haider and Webb [5] developed a model, which

takes into account a steady state convection term in

addition to the transient conduction term and expressed

the external heat flux as

q00ex ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pklqlcpf

p
D2

dnsDTsup 1

�
þ 0:66pc

Pr1=6

� �n	1=n

ð41Þ

Based on data of Chien and Webb [9], a value of 6.42

was recommended for the constant �c� and 2 for the

constant �n�. Eq. (41) was used to predict the exter-

nal heat flux for the structures used in the authors�
visualization study [11]. The model resulted in significant
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overprediction (as high as 500%). The use of a universal

constant of 6.42 for all heat fluxes does not seem to be

an appropriate one in Eq. (41). The current study pro-

poses a variable value for �c� which is a function of the

wall superheat. Based on the visualization data, a third

order polynomial was evaluated such that the difference

in the predicted and experimental heat flux values were

within acceptable limits. The proposed function for �c� is

c ¼ a0 þ a1ðDTsupÞ þ a2ðDT 2
supÞ þ a3ðDTsupÞ3 ð42Þ

the constants are a0 ¼ 6:58, a1 ¼ �1:1612=�C, a2 ¼
0:0782=�C2 and a3 ¼ �0:0018=�C3.

Eq. (42) was used to predict the external heat flux for

the data listed in Haider and Webb [5] and the current

flow visualization data. The error in the predictions is

within �40% for almost all the data points (for details

see [15]).

As the number of bubbles grows on the heated sur-

face, the average distance between two adjacent bubbles

reduces. For a distance greater than two times the

bubble departure diameter the assumption of an influ-

ence area twice the diameter of a bubble is valid.

However, if the average separation distance falls below

twice the bubble departure diameter, the influence areas

will overlap. Judd and Lavdas [18] showed that as the

vapor coverage increases on the surface, the influence

area reduces. Based on a curve fit to the experimental

data of Judd and Hwang [19], they proposed an influ-

ence factor as a function of the fractional boiling area.

In the current study, all the structures have pores on a

uniform grid. For a given nucleation site density, the

average separation distance between two adjacent bub-

bles can be evaluated as

s ¼ 1ffiffiffiffi
ns

p ð43Þ

It is assumed that there is almost no phase lag between

the bubbles departing from adjacent pores. Hence, as the

distance �s� falls below twice the bubble departure dia-

meter, the area of influence reduces and will be no more

than a circle of diameter equal to the separation distance

itself. This has been included in the external heat flux

model used in the current study.
2.7. Prediction procedure

Based on the equations outlined, a prediction pro-

cedure was developed. The steps in predicting the es-

sential parameters are as follows:

(1) Calculate the bubble departure diameter (Dd) using

Eqs. (3), (4), (7), (9), (11) and (35).

(2) Calculate the initial meniscus radius rm;i from the

correlation developed (procedure and equation in

next section).
(3) Calculate the latent heat transfer inside the tunnel

during the waiting period (Qt;w) and also calculate

the waiting period (Dtw). Small time steps were cho-

sen to solve Eq. (34) until the right-hand side and

left-hand side values matched within 5%. After

every time step, a new meniscus radius (rm;new)

was calculated using Eqs. (20) and (21). The menis-

cus radius at the end of the waiting period (rm;g)

becomes the initial value for the growth period.

(4) Calculate the growth period (Dtg) using Eq. (36).

(5) Calculate the latent heat transfer inside the tunnel

during the growth period (Qt;g) by dividing the en-

tire growth period into small time increments and

stepping through them similar to step 3.

(6) Calculate the frequency of bubble departure (f ) as
1=ðDtw þ DtgÞ.

(7) Calculate the total tunnel heat flux (q00t ) as

ðQt;w þ Qt;gÞf =Aex.

(8) Calculate the nucleation site density (ns) using

Eq. (38).

(9) Calculate the external connective heat flux (q00ex)
using Eqs. (41) and (42).

(10) The total heat flux is calculated as q00 ¼ q00t þ q00ex.

2.8. Correlating the initial meniscus radius (rm;i)

The results from the visualization experiments were

used to develop an expression for calculating the initial

meniscus radius. An initial guess for rm;i was chosen and

the procedure outlined above followed to calculate the

total heat flux. The predicted heat flux was compared to

the experimental value at the same wall superheat. The

procedure was repeated till q00pred � q00exp. The total change
in volume of liquid per unit length (DAcyc) was then

calculated using the following equation (per bubble

cycle):

DAcyc ¼ ðr2m;i � r2m;eÞNm 1
�

� p
4

�
ð44Þ

The final meniscus radius (rm;e) was assumed to attain a

value where no further evaporation takes place [4]. This

is also referred to as the non-evaporating meniscus ra-

dius (rne). The non-evaporating meniscus radius is de-

pendent only the fluid properties and the wall superheat

and is expressed as

rne ¼
r

DTsup

dTv
dPv

� �
ð45Þ

The term dTv=dPv is evaluated using Eq. (23). The next

step was to correlate the calculated data for DAcyc based

on the geometric parameters. The liquid volume change

per unit length depends on the geometric parameters,

wall superheat and the fluid properties. Since only FC-

72 was used in the above study, the correlation devel-

oped here is only valid for this fluid. The geometric
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Fig. 6. Comparison of bubble departure diameter––prediction

vs. experiments.
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factors that influence the amount of liquid inside the

tunnels are the pore diameter, pore pitch, tunnel height

and tunnel width. Since the tunnel width in the current

structures is the same as the pore size, only one of the

factors is sufficient to capture either variable. The

number of menisci (Nm) depends on the cross-section of

the tunnel. For tunnels with sharp corners at the base

(Fig. 4a), Nm ¼ 4 (two on top and two at the bottom)

and for tunnels with a curved base (Fig. 4b), Nm ¼ 2 (at

the top only). In this study, the structures fabricated

using wet-etching had a rectangular base. Structures

fabricated using wafer dicing had a rounded base. Hence

this is an added parameter that was included in the

correlation. The final form of the correlation was as-

sumed to be as follows:

DAcyc ¼ CaðDTsupÞa1ðD2
pÞ

a2Pa3
p Ha4

t Na5
m ð46Þ

The data points from visualization studies were used to

develop several different correlations. The one that was

used for carrying out the predictions had the following

constants:

Ca ¼ 2:4322� 10�6; a1 ¼ 1:266; a2 ¼ 0:428;

a3 ¼ �0:138; a4 ¼ 0:525; a5 ¼ 0:026

The liquid intake depends on the total area of pores

on the structure. Clearly, as the number of pores in-

creases, there will be more liquid supply into the tunnel.

The negative sign of the exponent (a3) for the fin pitch

(Pp) reflects this. Similarly, for a constant pitch, a larger

pore size will result in better supply of liquid. This is

indicated by the positive exponent (a2) for the pore dia-
meter (Dp).

The model was developed primarily for the isolated

bubble regime. The assumption was that the individual

bubbles departing the surface do not coalesce either

laterally or vertically. If either phenomenon occurs, the

prediction of the bubble departure diameter is no more

valid. Also a coalesced bubble may hover around for a

longer time or get pulled out by a departing bubble from

an adjacent site. Hence the point of coalescence (either

vertical or lateral) is a physically meaningful criterion to

define the upper limit of this model. The criterion for

lateral coalescence is provided by Eq. (43). When the

average separation distance is equal to the bubble de-

parture diameter, lateral coalescence will occur. The

vertical coalescence was defined using an approach

outlined by Zuber [20]. The study shows that the con-

dition for vertical coalescence can be expressed in terms

of a dimensionless group �B� as

B ¼ p
6

nsD3
d f

vt
¼ 1

4
ð47Þ

where vt is the terminal velocity of a bubble in a liquid

pool. The terminal velocity is expressed as
vt ¼ 1:53
rgðql � qvÞ

q2
l

� �1=4
ð48Þ

This criterion was included in the model described above

and the predictions stopped when either of the two limits

was reached.
3. Results of semi-analytical model

The semi-analytical model described in the previous

section was used to predict the bubble departure, fre-

quency, nucleation site density and the total heat flux

dissipated from the enhanced structures. The predicted

values were compared to the experimental data and sa-

lient results are included below.

3.1. Prediction of bubble departure diameter

A comparison of the predicted and experimental

values for bubble departure diameter is shown in Fig. 6.

The nomenclature of the structures are to be interpreted

as follows: the first letter �S� denotes structures made in

silicon, the number following that gives the pore diam-

eter (in millimeters). The number following the pore

diameter is the pore pitch (in millimeters) and finally the

last letter denotes the method of fabrication (�D�––wafer
dicing and �W�––wet etching). The results in Fig. 6 show

very good agreement between the predicted and experi-

mental values. The absolute error in predicting the de-

parture diameter was within a range of +10% to )6%.

Another useful statistic referred to as the relative devi-

ation is defined as [7]

r:d: ¼
PN

k¼1

jDd;pred;k�Dd;exp;k j
Dd;exp;k

N
� 100 ð49Þ

where N is the number of data points. The relative de-

viation for the current model was 2.4% (based on 24
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flow visualization data points) showing the effectiveness

of the current model. The individual force data showed

that at low wall superheat values (2–6 �C), the growth

force, buoyancy force, surface tension force and lift

force are of equal magnitude. However, at intermediate

wall superheat values (8–12 �C), the dynamic forces

(growth force and lift force) become the dominant ones.

Clearly, neglecting these forces in a bubble departure

model will lead to erroneous results.
3.2. Prediction of frequency

A comparison of the predicted values for frequency

and experimentally observed values is shown in Fig. 7.

The curves show that at low wall superheats (4–6 �C) the
absolute error is within �30%. However, at intermediate

wall superheats (8–12 �C), the model overpredicts by as

much as 60% (for at least two data points). The relative

deviation for the set of 24 data points using the current

model was 24%. The predicted values show that the

frequency increases monotonically with an increase in

the wall superheat values. However, the experiments

show a reduction in the frequency, at intermediate wall

superheat values (8–12 �C).
The total cycle time for a bubble to form and depart

is made up of the waiting time and the growth time.

Under prediction of either of these quantities will lead to

an overprediction in the frequency. A comparison of the

predicted and experimentally measured values of the

growth period shows that the absolute error is within

+20% at all wall superheat values. Hence, an under-

prediction in the waiting period was the main reason for

the overprediction in frequency for the two data points

(mentioned above). The evaporation inside the tunnels

was found to be sensitive to the Hamaker constant. This

affects the prediction in the waiting period directly. A

better understanding of the Hamaker constant is re-

quired and an improvement in this factor will improve

the frequency predictions.
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Fig. 7. Comparison of frequency––prediction vs. experiments.
3.3. Prediction of nucleation site density

A comparison of the predicted values for nucleation

site density with that observed experimentally is shown

in Fig. 8. The absolute error in the prediction lies within

a range of �40%. The relative deviation in the nucle-

ation site density for the current set of data points was

20%. The bubbles form on the external surface as a re-

sult of the evaporation in the tunnels. Hence any un-

certainty in the prediction of evaporation inside the

tunnels translated in an uncertainty in the prediction of

the nucleation site density.

3.4. Prediction of heat flux

A comparison of the predicted values to experimental

ones, for structures with a pore size of 150 lm is shown

in Fig. 9. The data show that the prediction for structure

�S-0.15-1.4-D� was fairly accurate. The maximum error

in prediction for this structure was +14% at the lowest

wall superheat (7.3 �C). This error reduced at higher wall

superheat (17.3 �C) to approximately )1%. The maxi-

mum error in the predictions for �S-0.15-0.7-D� was

+33% at the lowest wall superheat (4.5 �C). The error

reduced monotonically to almost )4% at a wall super-

heat of 12.5 �C. A similar trend was observed for

structure �S-0.15-0.5-W�. The maximum error in this case

was 50% at a wall superheat of 4.4 �C and the error

reduced monotonically to )4.9% at a wall superheat of

10.9 �C. The total heat flux is a sum of the tunnel heat

flux and the external heat flux. The tunnel heat flux

depends on the initial meniscus radius and the rate of

evaporation. The external heat flux depends on the nu-

cleation site density, bubble departure diameter and the

influence factor (when the average separation distance

falls below twice the departure diameter). And frequency

affects both the components of heat flux. The predictive

error associated with the bubble departure diameter,

frequency and nucleation site density has already been

discussed in the previous sections. A combination of any
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Fig. 8. Comparison of nucleation site density––prediction vs.

experiments.
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Fig. 9. Comparison of predicted and experimental heat flux for

all structures with Dp ¼ 150 lm.
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of these factors could have resulted in the errors for heat

flux prediction. The model�s strength lies in the predic-

tion of the trend observed in the experiments. The pre-

dictions do show that increasing the number of pores

results in higher heat dissipation (at the same wall su-

perheat values).

The predicted results (Fig. 9) show a distinct change

in slope for �S-0.15-0.5-W� and �S-0.15-0.7-D�. This

change in slope coincides with the point where the av-

erage separation distance falls below twice the bubble

departure diameter. One of the assumptions of the ex-

ternal heat flux model was that the bubbles departing

from adjacent sites did not have a phase lag. Hence the

area of influence was assumed to be no more than a

circle of diameter equal to the separation distance itself.

In reality, there will be some phase difference between

the bubbles and hence the influence diameter will be

more than the average separation distance. This will

make the transition in the predicted curves smoother

and reduce the underprediction at the higher wall su-

perheat values. However, this requires some validation

and quantification through more fundamental flow vi-

sualization studies. An alternative approach was to

curve fit the external heat flux to arrive at an empirical

influence factor similar to Judd and Lavdas [18]. How-

ever, this would have introduced another empirical

constant (or function). To reduce the empiricism in the

model, the former approach was chosen.

Comparison of the predicted values to experimental

ones, for structures with a pore size of 200 lm is shown

in Fig. 10. Once again the trends were similar to that

observed with 150 lm structures. The predictive error

was in the range �30%. Similar predictions were carried

out for other structures (for details see [15]).

3.5. Optimization of enhanced structure

The ultimate goal of the model is to carry out

optimization of the enhanced structure geometry. The
current model was used to study the effect of changing

the geometrical parameters (pore diameter and pore

pitch) to maximize heat transfer. In the accompanying

paper, it is shown that increasing the pore diameter or

the pore density increases the heat transfer, for the

same wall superheat. For enhanced structures of sim-

ilar overall size, as the pore diameter is increased, the

number of pores per channel and hence the pore

density decreases (assuming that the wall thickness

between adjacent channels is the same). These have

competing effects on the heat transfer and hence an

optimum could be found where heat transfer is max-

imum. Tables 1–3 show the heat flux from structures

with three different wall thicknesses (0.1–0.7 mm). As

mentioned earlier the current model was developed for

suction–evaporation mode. For cases where the liquid

floods the channels, the results in the table mention

that. The table also mentions if a coalescence criterion

was reached. The results show that for a wall thick-

ness of 0.3 mm, the optimum pore diameter is

approximately 100 lm. However for wall thickness of

0.7 mm, the optimum is approximately 200 lm. Com-

paring all the structures simultaneously reveals that a

smaller pore diameter with lots of pores results

in maximum heat transfer, but this also makes the

structure structurally weak. In addition impurities

in the fluid will eventually clog the very fine pores.

Hence while designing an optimum structure fac-

tors other than heat transfer will also have to be

considered.
4. Conclusions

A semi-analytical model that predicts the departure

diameter, frequency, nucleation site density and total

heat flux for isolated bubble regime has been developed.

The model assumes that the boiling mode is �suction–
evaporation� and the meniscus evaporation within the



Table 2

Predicted heat dissipation for enhanced structures with wall thickness¼ 0.3 mm

DTsup Heat flux (W/cm2)

Dp ¼ 50 lm, Pp ¼ 0:15 mm Dp ¼ 100 lm, Pp ¼ 0:2 mm Dp ¼ 200 lm, Pp ¼ 0:3 mm Dp ¼ 300 lm, Pp ¼ 0:4 mm

2.5 2.1 2.2 2 Flooded

3.75 4.4 4.6 4.3 3.6

5 6.8 7.1 6.6 5.7

7.5 11.1 11.8 10 8.6

10 13.9 13.6 12 10.6

12.5 15.7 16.1 14.8 13.2

Table 1

Predicted heat dissipation for enhanced structures with wall thickness¼ 0.1 mm

DTsup Heat flux (W/cm2)

Dp ¼ 50 lm, Pp ¼ 0:15 mm Dp ¼ 100 lm, Pp ¼ 0:2 mm Dp ¼ 200 lm, Pp ¼ 0:3 mm Dp ¼ 300 lm, Pp ¼ 0:4 mm

2.5 5.6 4.8 Flooded Flooded

3.75 10.2 7.9 5.6 3.8

5 12.7 10.3 8.8 6.2

7.5 15.8 13.7 10.8 9

10 Coalescence Coalescence 13.9 11.8

Table 3

Predicted heat dissipation for enhanced structures with wall thickness¼ 0.7 mm

DTsup Heat flux (W/cm2)

Dp ¼ 50 lm, Pp ¼ 0:15 mm Dp ¼ 100 lm, Pp ¼ 0:2 mm Dp ¼ 200 lm, Pp ¼ 0:3 mm Dp ¼ 300 lm, Pp ¼ 0:4 mm

2.5 0.9 1 1 1

3.75 1.9 2 2.1 2.1

5 2.9 3.1 3.3 3.3

7.5 4.8 5.3 5.6 5.6

10 6.5 7.6 8.1 7.9

12.5 8.6 10.4 11.4 11.2

15 10.9 14 15.3 14.5

20 13.2 16.8 17.7 17.4
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tunnel results in all the vapor formation. The salient

improvements over existing models and conclusions

based on the predictions are

(a) The dynamic forces have been included in the pre-

diction of the bubble departure diameter and the

magnitude of individual forces shows that these

dominate at higher wall superheats.

(b) Local variation of the liquid saturation temperature

due to variation in the meniscus thickness has been

included in the tunnel heat transfer component.

The Hamaker constant affects the evaporation rate

(Eqs. (15)–(17)) inside the tunnels and hence all

the other components that depend on the tunnel

heat transfer. The sensitivity of predictions to this

constant has been pointed out.

(c) A wall superheat dependent constant �c� for the con-
vective component of external heat flux has been

proposed. A physically meaningful criterion for bub-
ble coalescence has been proposed and defines the

upper limit of the model.

(d) The current model predicts the bubble departure

diameter fairly accurately. It captures the increase

in bubble diameter at higher wall superheats.

(e) The frequency prediction is within �30% at low wall

superheat values. However, underprediction in the

waiting time results in errors of as much as 60%

for a couple of data points. The prediction for nucle-

ation site density was found to be within �40%. The

sensitivity of the prediction to the value of Hamaker

constant is outlined.

(f) The heat flux was predicted within �50%. The im-

portant aspect of the model is that it captures the

trends fairly well. The predictions show a rise in

the heat dissipation with an increase in the number

of pores (reduction in the pore pitch). The model

also predicts higher heat dissipation for a larger pore

diameter.
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